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aCenter for Polymer Studies, Boston University, Boston, MA 02215; bDepartment of Physics, Boston University, Boston, MA 02215; cFaculty of Civil
Engineering, University of Rijeka, 51000 Rijeka, Croatia; dZagreb School of Economics and Management, 10000 Zagreb, Croatia; eLuxembourg School of
Business, 2453 Luxembourg, Luxembourg; fFaculty of Information Studies, SI-8000 Novo Mesto, Slovenia; gCenter of Mathematics for Social Creativity,
Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0808, Japan; hDepartment of Psychological and Brain Sciences, Boston
University, Boston, MA 02215; iSchool of Systems Science, Beijing Normal University, 100875 Beijing, China; jLaboratory of Biological Networks, Center for
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Scientists strive to understand how functionalities, such as con-
servation laws, emerge in complex systems. Living complex sys-
tems in particular create high-ordered functionalities by pairing
up low-ordered complementary processes, e.g., one process to
build and the other to correct. We propose a network mechanism
that demonstrates how collective statistical laws can emerge at a
macro (i.e., whole-network) level even when they do not exist at
a unit (i.e., network-node) level. Drawing inspiration from neuro-
science, we model a highly stylized dynamical neuronal network
in which neurons fire either randomly or in response to the fir-
ing of neighboring neurons. A synapse connecting two neighbor-
ing neurons strengthens when both of these neurons are excited
and weakens otherwise. We demonstrate that during this inter-
play between the synaptic and neuronal dynamics, when the net-
work is near a critical point, both recurrent spontaneous and stim-
ulated phase transitions enable the phase-dependent processes to
replace each other and spontaneously generate a statistical con-
servation law—the conservation of synaptic strength. This conser-
vation law is an emerging functionality selected by evolution and
is thus a form of biological self-organized criticality in which the
key dynamical modes are collective.

complex networks | emerging properties | homeostatic plasticity |
neuroscience | neuronal noise

What accounts for the functionality of complex systems? Is
it component availability or the layout of the available

components? Recent discoveries emphasize the role of the lay-
out (i.e., the topological structure) by showing that some com-
plex systems—both living and artificial—preserve functionality
after the random removal of components. In this context, biolo-
gists debate whether nature creates new functionalities by adding
components through mutations or by reorganizing and rewiring
already existing components (1–3). For example, a particularly
well-known biological case study that illustrates the importance
of topological structure is of brain networks in which the small-
world organization (4) is pervasive in both an anatomical (5)
and a functional (6) sense. Irrespective of scale—from neurons
(4, 7) to cortical regions (8)—small-world topology is a funda-
mental organizational principle in the brain that extends beyond
the specific role a particular brain region may have. Deviations
from this specific network organization are, in fact, related to
brain dysfunction or the emergence of neurodegenerative dis-
eases (9). Understanding the role of the small-world topolog-
ical structure and how it emerges is extremely difficult (10)
because it requires analyzing the interplay between at least
four fundamental brain properties: structure, dynamics, function,
and evolution.

Our goal is to understand how functionalities spontaneously
emerge in a complex system. Working in the framework of net-
work science, we focus less on topological structure and more on
the collective dynamical state of a complex system as it responds
to the dynamics of its fundamental components, the interaction
between them, and the evolution of their network of interactions
(11). This notion is exemplified in ref. 12 in which weak corre-

lations between pairs of neurons may contribute to strongly col-
lective behavior in a neural population. Accordingly, in building
our model, we draw inspiration from neuroscience and desig-
nate network nodes and links as neurons and synapses, respec-
tively, and their dynamics as a recurrent flipping between two
different phases. This phase flipping is ubiquitous in the com-
plex system modeling of neuroscience. Examples include flipping
between collective depolarization and polarization phases with
predominant excitatory cortical neurons and inhibitory interneu-
rons, respectively (13), enhancing and blocking sensory-motor
processing, and the generation of pathological rhythms associ-
ated with psychiatric or neurological disorders (14).

Here we use the synaptic homeostasis hypothesis (15), which
states that to generate the long-lasting synaptic homeostasis
needed for the optimal functioning of the brain, the brain
flips between a phase with dominant memory-formation pro-
cesses and a phase with dominant memory-consolidation pro-
cesses. This formation of new memories is associated with synap-
tic potentiation during wakefulness, while the consolidation is
thought to result in synaptic downscaling during sleep/rest. In
fact, a restorative role of deep sleep for the brain’s capacity to
undergo neuroplastic changes during wakefulness was proved in
a recent experiment (16). The dynamics of our network model
illustrate how such a homeostasis may spontaneously arise as
a consequence of simple interactions between nodes and links.
Specifically, by combining processes in two mutually exclusive
phases between which the network flips, while downplaying
biochemical processes at the neuronal level (17), a statistical
conservation law of synaptic strength emerges without being a
priori ingrained in either of the phases. This and similar spon-
taneously emerging new functionalities in complex biosystems
are still inadequately understood within network science (18).
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Accordingly, our contribution demonstrates how the evolution
of such functionalities follows a self-organized criticality pattern
(17) whereby, irrespective of the system’s initial state, the sec-
tion of the phase space in which the conservation law of synaptic
strength holds gets selected.

Model
Theoretical research (19) has depicted the propagation of action
potentials through neurons using the Hodgkin–Huxley model
based on detailed biophysical and biochemical processes. More
recently, percolation theory (20) was used to emulate informa-
tion transfer between neurons such that a presynaptic neuron
can excite a postsynaptic neuron by firing an action potential.
Further developments have led to models of signal processing,
including synfire propagation with synchronous neuronal activity
and firing-rate propagation (21).

We use a dynamical neuronal network approach in which neu-
rons are either excitatory or inhibitory. To minimize the number
of parameters, the dynamics of the inhibitory neurons are condi-
tional on the excitations of the excitatory neurons. This network
model is a highly stylized version of a realistic neuronal network
in that we neglect the existence of a brain substructure or the
fact that memory formation assumes interaction between differ-
ent brain regions (22). In addition, excitable cortical neurons in
realistic networks process and transmit information in the form
of electrical and chemical signals in response to outside stimuli
(i.e., hearing, sight, touch, smell, and taste). When this neuronal
network receives a time-dependent input, signals spread along
pathways and cause different neurons to become excited and fire
action potentials. Because each neuron thus generates its own
time series of excitations, we can estimate the probability that a
neuron has become excited. These probabilities play the role of
model parameters and reflect the average behavior of neurons
when they are triggered by outside stimuli.

In our dynamical neuronal network, links between nodes are
synapses that change their strength, depending on neural activ-
ity. Ever since the work of Cajal, it has been known that learn-
ing changes the strength of synaptic connections between neu-
rons. In the face of changing synaptic strengths, how does the
brain achieve homeostatic plasticity (23, 24)? How does it main-
tain conditions necessary for normal and robust functioning with
respect to fluctuations in the environment? To answer these
questions we start by locating the part of the phase space where
the neuronal network flips between an excited phase and a rest-
ing phase. Then we look at what each neuron does locally to
produce the desired collective behavior (17, 25) and generate a
statistical conservation law that preserves the average synaptic
strength. This approach leads to the model’s three fundamental
assumptions:

Assumption i. Although neurons activate in response to external
stimuli by firing action potentials, their activations are also sub-
ject to stochastic processes governed by, e.g., the reliability of
synaptic transmission and the stochastic fluctuations of the mem-
brane potential (26–28). Averaging external stimuli over all neu-
rons, we thus assume that as a result of past external stimula-
tions any neuron can excite spontaneously with probability p and
remain active for τ time steps. Each neuron has the probabil-
ity pdt of this excitation during time interval dt , similar to the
internal failure described in refs. 29 and 30. This is also similar
to the concept in percolation theory in which a connected cluster
in a random graph is constructed by assuming that the edge or
“bond” between two neighbors can be open (allowing the signal
through) with probability p or closed with probability 1− p. The
difference is that we are modeling neuron excitability rather than
link excitability.

Assumption ii. As stated above, neurons usually activate in
response to external stimuli. We thus assume that each (postsy-
naptic) neuron can excite (fire action potentials) in response to
activity in its immediate neighborhood (presynaptic neurons). If

a single neighbor of neuron i is excited at time t−1, then neuron
i will fire at time t with a probability p1dt . When there is more
than one excited neighbor at time t−1, the probability that i will
fire at t increases to p2dt (p1< p2). We assume that a neuron
can be excited externally only by its nearest neighbors. Once a
neuron fires in response to another neuron, it stays excited for τ ′
time steps (without any loss of generality we set τ ′= τ).

Assumption iii. To mimic synaptic and interneuronal dynamics,
two neighboring neurons in the excited state, i and j , gener-
ate an excitatory postsynaptic potential with probability ps and
an inhibitory postsynaptic potential with remaining probability
1 − ps . If, by contrast, either of neighbors i and j is in the rest-
ing state, only an inhibitory postsynaptic potential is generated.
The excitatory potential strengthens the synapse between i and
j by an amount ∆εU = ε, where ε is taken from an exponen-
tial distribution with SD σ. The inhibitory potential weakens the
same synapse by an amount ∆εD = zε, where z is a small number
such that ∆εD <<∆εU . Practice is required for learning (31),
but once we learn it is not easy to forget.

To make the exposition easier to follow, we initially focus
on the relatively rich dynamics arising from assumption i and
assumption ii, while disabling the model’s features specified in
assumption iii. This last assumption plays a central role once our
attention is turned toward synaptic plasticity and the conserva-
tion of synaptic strength.

Results
Spontaneous Phase Flipping. Note that over a large region of the
phase space given by (p, p1, p2) the neuronal network stays in
either a primarily excited or a resting phase (29). Assuming a
fixed value of p2, over a small part of the (p, p1) phase plane
(Fig. 1) the neuronal network exhibits spontaneous phase flip-
ping (Fig. 2) (29). This spontaneous phase flipping is not in
response to a specific stimulus but is intrinsically generated by
the brain (32–34).

Rarely is phase flipping in living complex systems purely
stochastic. Regulatory stimuli are also present, and our for-
malism accommodates both. For example, let us set a network
at point (p1 =P1, p2 =P2) in the phase space. Here flipping
is spontaneous, but regulation decreases the p1 parameter to
p1 = (1 − ∆p)P1 during the excited phase and increases it to
p1 = (1 + ∆p)P1 during the resting phase where 0≤∆p< 1 is
a real number. Fig. 2 shows that the larger the value of ∆p is,
the smaller the spontaneous contribution to phase flipping. As
the stimulus-driven phase flipping becomes dominant, the tim-
ing of phase transitions gets more predictable. Positioning itself
in the phase space to secure spontaneous phase flipping, the sys-
tem ensures an evolutionary advantage in that even small stimuli
are sufficient to achieve considerable regulation. This advantage
may furthermore be important in the context of aging, assuming
that the ability to generate reliable stimuli gradually degrades.

The described behavior is, in the mean-field limit, independent
of the detailed topology. A crucial parameter is only the average
degree of nodes. Numerical simulations, however, require work-
ing with a particular network structure. Here we simply place
the nodes in a 2D lattice and create links from any focal node
to its first and second physical neighbors. The lattice is given
toroidal boundaries, resulting in a network as visualized in Fig.
2. The phase-flipping mechanism in our framework gives rise
to a new higher-order emerging functionality, the preservation
of the average synapse strength. How the network dynamically
sets itself in this narrow part of phase space is explained later by
means of evolution.

The equilibrium fraction of excited neurons can also be
approximated analytically. If internal (X ) and external (Y ) exci-
tations are considered independent (only approximately possi-
ble), according to probability theory P(X∪Y ) =P(X )+P(Y )−
P(X )P(Y ). In our model, a randomly chosen neuron i will
become externally excited with probability p1 if it is surrounded
by a single excited neuron, while the same will happen with
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Fig. 1. Model of bistability and the phase-flipping mechanism. Generally, our model has an equilibrium of low (light blue) and an equilibrium of high (light
red) activity, depending on the parameter values. (A) As the value of parameter p2 (and hence p∗

2 = 1 − e−p2τ ) increases, a region of bistability opens in
the (p∗, p∗

1 ) phase space (white). The existence of this region is a necessary condition for phase flipping to occur. The bistable region and the corresponding
spinodals are predicted theoretically, but the validity of these predictions is confirmed by the fact that the numerical implementation of the model exhibits
phase flipping when positioned inside the bistable region (asterisk-marked point). (B and C) Increasing p∗

2 even further causes the bistable region to widen
and split, whereby the low-activity region eventually disappears. (D) For fixed p∗ and p∗

1 , the equilibrium fraction of nodes with excited neighbors, E, as a
function of p∗

2 bifurcates. Phase flipping is possible only near the bifurcation point, where the stochasticity in the model formulation easily pushes E across
the border (dashed green line) that separates the states of low and high activity.

probability p2 if it is surrounded by two or more excited neu-
rons. Thus, the probability a ≡ P(X ∪ Y ) that a randomly
chosen neuron i is excited either by neuronal noise or by i ’s
neighbors equals

a = p∗ + E1p
∗
1 + E2p

∗
2 − p∗(E1p

∗
1 + E2p

∗
2 ), [1]

where E1 = E(k , 1, a) and E2 = Σm≥2E(k ,m, a) with
E(k ,m, a)≡ am(1− a)k−m (

k
k−m

)
being the probability that

node i with k links has m excited neighbors. We use p∗= 1 −
e−pτ . Analogous definitions hold for p∗1 and p∗2 (below). Quan-
tity a can alternatively be interpreted as the equilibrium fraction
of excited neurons.

Several properties of the model become intuitively clear with
the help of Eq. 1. For example, if we considered the unidi-
rected interactions by designating some links as incoming and
others as outgoing, Eq. 1 would still hold as long as the node
degree, k , is replaced with the in-degree kin ≤ k . Accordingly, the
model’s quantitative properties would change, but not its qualita-
tive ones. A similar conclusion holds even if we changed the net-
work topology quite considerably. This claim is substantiated by
the form of Eq. 1, which is free of any assumptions on the under-
lying network topology. The main reason why quantitative details
may differ between models is that for more heterogeneous net-
work topologies (e.g., scale-free), the average node degree, k , is
much less representative of the true degree of a randomly cho-
sen node than for less heterogeneous topologies (e.g., regular
random). A good illustration of how a theoretically predicted
bistable region may deviate from a numerically observed one is
shown in ref. 29, wherein the authors consider a conceptually
similar model. Furthermore, because we constructed the model
in such a way that a single firing neighbor of the focal neuron
is much less likely to affect this focal neuron than if there were
two or more firing neighbors, the terms in Eq. 1 that include p∗2

are generally an order of magnitude higher than the terms that
include p∗1 , thus causing the model to be much more responsive
to p2 than to p1. Note that parameters p1 and p2 measure how
responsive the network is to an external forcing which, in turn, is
determined by the value of parameter p. A consequence is that as
p2 increases, the network should more easily transition into the
excited state, which in the (p∗, p∗1 ) plane is reflected as a down-
ward shift of both boundaries of the bistable region in Fig. 1 C
and D. However, the shift of the excited state’s boundary is much
less pronounced at first. As p2 keeps increasing, the boundary
of the excited state eventually touches the line p∗1 = 0, meaning
that the resting state degenerates in the sense of being accessible
only when no outside stimuli occur (i.e., p = 0). Finally, relatively
strong external forcing compared with the network’s responsive-
ness (i.e., high enough p relative to p1 and p2) transitions the
network immediately into the excited state. For flipping to occur,
the low state must also be accessible, which indeed happens only
when external forcing is reasonably weak.

Several analytical results follow from the model assumptions.
Let 0< e(t)< 1 be the fraction of nodes that are in the exter-
nally excited state, where t denotes the current moment in
time. We decompose quantity e(t) into the fraction of externally
excited nodes with only one excited neighbor, e1(t), and with two
or more excited neighbors, e2(t). Consequently, e(t)≡ e1(t) +
e2(t). At any moment t , each neuron experiences new exter-
nal excitation with probability p1<< 1, meaning that the clock
that counts the time since the last excitation is reset to 0. If we
denote the time on this clock with `, then at ` = τ a node that
was previously externally excited returns to the resting state. It is
now possible to infer the time evolution of the fraction of nodes,
c`(t), that experienced their last external excitation at moment
t − `. Specifically, if we decompose c`(t) in a manner analogous
to e(t), then c1,`(t) evolves as

11828 | www.pnas.org/cgi/doi/10.1073/pnas.1705704114 Podobnik et al.
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Fig. 2. Activity of a phase-flipping neuronal
network. (A and B) A graphical representation
of the network defined in the main text with
phase flipping between a mainly excited and
a mainly resting phase, which emerges if the
network is set appropriately inside a bistable
region of the phase space (Fig. 1). In this exam-
ple, the parameter values are such that the net-
work is at the asterisk-marked point in Fig. 1C,
while the corresponding equilibrium fraction of
nodes with one or more excited neighbors is
shown in Fig. 1D—p∗ = 0.0004, p∗

1 = 0.0247, and
p∗

2 = 0.40. (C–E) In addition to completely spon-
taneous phase flipping, regulated stimuli may
exert substantial control over the timing of tran-
sitions between the two phases. Here, the time
series of activity is progressively more periodic
as the value of parameter ∆p increases. Gener-
ally, if ∆p equals zero, the network exhibits only
spontaneous phase flipping. As ∆p approaches
unity, stimuli start to dominate over the sponta-
neous flipping mechanism.

c1,`(t + 1)− c1,`−1(t) = −p1c1,`−1(t), [2]

indicating that the decrease in the fraction of nodes that under-
went excitation at t − ` due to their single excited neighbor is
possible only because of new excitation at t . Extending the same
argument to c2,`(t), we obtain

c2,`(t + 1)− c2,`−1(t) = −p2c2,`−1(t). [3]

The time evolution of e1(t) and e2(t) attains a similar mathe-
matical form that can now be written

e1(t + 1)− e1(t) = p1[E1(t)− e1(t)]− c1,τ (t), [4]

and

e2(t + 1)− e2(t) = p2[E2(t)− e2(t)]− c2,τ (t) [5]

with E(t), E1(t), and E2(t) defined in Eq. 1. The interpretation
of the above equations is that the fraction of externally excited
nodes (i) increases only if some unexcited nodes have excited
neighbors and (ii) decreases due to the finite time of being in
the externally excited state.

Time-evolution equations reveal steady states. In a steady state,
the equation for c1,` becomes c1,` = c1,0(1− p1)`≈E1p1e

−p1`

because the initial condition at `= 0 is c1,0(t) =E1p1. Simi-
larly, c2,` = c2,0(1− p2)`≈E2p2e

−p2`. The steady-state solution
for e1 satisfies condition p1(E1 − e1) = c1,τ , resulting in e1 =

E1(1− e−p1τ ). Analogously, e2 =E2(1− e−p2τ ). Combining the
last two equations finally gives e ≡ e1 + e2 =E1(1 − e−p1τ ) +
E2(1− e−p2τ ) ≡ E1p

∗
1 +E2p

∗
2 , where we define p∗j ≡ 1− e−pj τ ,

j = 1, 2.

Synaptic Plasticity and the Conservation of Synaptic Strength. To
incorporate the strengthening and weakening of synapses into
our dynamical network approach, synaptic strengths between
neurons are initially assigned random values from an exponen-
tial distribution with mean and SD set to unity. The network is
furthermore set in a phase-flipping state. To allow homeostatic
plasticity to emerge dynamically and spontaneously as the system
flips between a predominantly strengthening phase and a pre-
dominantly weakening phase, we use assumption iii.

Because there is some chance for synapse weakening to
occur during the excited phase, our definition of the interac-
tion between two neurons yields that this phase is associated
with a net increase in the synaptic strength—synapse strength-
ening dominates over synapse weakening (15). The resting phase
restores the balance because synapse weakening dominates over
synapse strengthening. Quantity εD , however, is sufficiently low
that a large number of steps are required until the average
synapse strength falls below the baseline level. It is further-
more very unlikely that a randomly chosen synapse of both neu-
rons will be excited during rest. The strength of each synapse
thus decreases by a proportional amount almost universally,

Podobnik et al. PNAS | November 7, 2017 | vol. 114 | no. 45 | 11829
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Fig. 3. A realization of the system-wide average synaptic strength in response to network activity (Inset). The neuronal network is seen switching between
excited and resting phases. In the excited (resting) phase, synaptic strength is predominantly increasing (decreasing). Strengthening and weakening of
synapses are the basic processes that exist in two mutually exclusive phases. Recurrent phase transitions of the network maintain the system-wide average
synaptic strength near the expected value, thus generating a statistical conservation law that neither of these basic processes can on their own. This
conservation law is a new functionality and a manifestation of homeostatic plasticity. Parameter values are ps = 1, z = 1/16, and σ = 10−4.

meaning that the decrease in synaptic strength is a near-
collective phenomenon.

A small value of εD implies that resting must be sufficiently
long to enable recovery and new learning, yet how long is suf-
ficient? Because a ≡ P(X ∪ Y ) is the probability that a ran-
domly chosen neuron is excited, a randomly chosen synapse
will have neurons at both its ends excited with probability a2.
In accordance with assumption iii, this synapse will strengthen
by amount E(∆εU ) =σ with probability a2pS , whereas with
remaining probability 1−a2pS , the same synapse will weaken by
E(∆εD) = zσ. Note that aU ≡ a > 0 in the excited phase differs
from aD ≡ a ≈ 0 in the resting phase. Accordingly, the average
synaptic strength is preserved if

σ[TU (a2
Ups − (1− a2

Ups)z ) + TD(a2
Dps − (1− a2

Dps)z )] = 0.

The ratio of the average fractions of time spent in excited and
resting phases—TU and TD , respectively—that balances the
increases with the decreases in synaptic strength is

TU

TD
=

(1− a2
Dps)z − a2

Dps
a2
Ups − (1− a2

Ups)z
. [6]

If this equality is satisfied, the phase-flipping mechanism and the
local mechanism of pairwise neuron interactions lead to a biolog-
ical conservation law (Fig. 3), i.e., the conservation of the average
synaptic strength (15).

We explained multiple qualitative properties of the model in
the context of Eq. 1, but an unanswered question that arises nat-
urally is how network size affects the conservation of synaptic
strength. This question is best understood in relation to Eq. 6,
which illustrates the necessity to precisely balance the ratio of
time spent in excited and resting phases, TU /TD . Namely, spon-
taneous phase flipping arises when the model is placed in the
bistable region of the phase space because of inherent stochas-
ticity whereby the values of parameters p, p1, and p2 are real-
ized only approximately in finite networks. The law of large num-
bers dictates that this approximation is more accurate as the
number of nodes increases. A consequence is that the range of
realized parameter values becomes stifled by network size, thus
making phase transitions rarer. In our model, rarer transitions
manifest themselves as an increase of ratio TU/TD with network
size (Fig. 4). Does this mean that very large networks are neces-
sarily stuck in the excited state? Not at all, because a higher preci-
sion guaranteed by the law of large numbers is readily countered
with extra stochasticity, which may be introduced into the model
through, for example, parameter ∆p mentioned previously in the
context of the system’s regulation (Fig. 2 C–E). An interesting

implication here is that stochastic regulation is sufficient if a par-
ticular value of ratio TU /TD is to be maintained, whereas deter-
ministic regulation is needed to keep TU and TD individually at
a particular value.

Evolution of the Conservation Law of Synaptic Strength. Finally,
we address the question of how nature “selects” the param-
eter values that lead precisely to a conservation law. For the
normal activity of many complex systems, parameters must be
kept within a narrow range around an optimal point. The
normal activity of neurons, for example, critically depends on
the constancy of pH, temperature, and electrolyte concentra-
tions (23). In this context, a “weapon” that Nature has at
its disposal is evolution or, more specifically, the process of
selection. This process works against the diminished fitness of
individuals whose parameters violate Eq. 6, i.e., prevent the
conservation of synaptic strength. To see why fitness of such indi-
viduals may diminish, let us consider the recent evidence that
perturbed deep sleep cannot restore the normal capacity to per-
form neuroplastic changes associated with wakefulness (16). In
turn, learning efficiency becomes impaired (16), causing the fit-
ness to diminish. The described situation can be interpreted as an

Fig. 4. Percentage of time spent in the excited state as a function of
the neuronal network size. Time spent in the excited state monotonically
increases with the network size. The red line in the log–log scale helps
to show the power law dependence on the network size. Some deviation
from this power law is observed as the percentage of time in the excited
state approaches 100%. The parameter values used here are the same as in
Figs. 1 C and D and 2—p∗ = 0.0004, p∗

1 = 0.0247, and p∗
2 = 0.40.
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imbalanced TU /TD ratio in the model because perturbed sleep
acts as if decreasing the value of parameter z that regulates the
restoration of synaptic strengths in the resting phase. By working
against the diminished fitness, selection pressure pushes the sys-
tem toward an optimal value of z and thus balanced TU /TD . An
extended version of this argument with the accompanying simu-
lations (Fig. S1) is presented in SI Results.

Discussion
We demonstrated that dynamically generated phase flipping
between the two different modes of network activity leads to reg-
ulated neuron excitability such that a statistical conservation law
emerges as a spontaneously generated functionality. In neuro-
science, homeostatic plasticity is attributed to synaptic scaling,
which is thought to act both globally and locally. Global adjust-
ment implies generating a cell-wide signal that operates on all
synapses proportionally, whereas local adjustment allows each
synapse to regulate itself in a homeostatic manner. By setting the
neuronal network in a phase-flipping state in which one phase
predominantly strengthens while the other weakens synapses,
homeostatic plasticity emerges dynamically and spontaneously as
a result of neuronal activity. Phase flipping between two differ-
ent phases, therefore, constitutes the feedback mechanism regu-
lating the constancy in neuronal activity.

During the model construction, we paid considerable atten-
tion to motivating and/or interpreting each assumption with
an underlying physiological mechanism. Thus, each of the two
phases corresponds to a level of mental engagement or con-
sciousness (35–37) whereas flipping between the two phases nat-
urally fits the need to recover from fatigue (16, 38). The model
in fact has the potential to accommodate a number of other
observed or hypothesized processes in the brain. It would be
of interest, for example, to couple our approach with that of

ref. 39 in which excitatory and inhibitory neurons with strong
synaptic couplings lead to rich internal dynamics in response to
incoming stimuli, thus providing a substrate for complex infor-
mation processing and learning. A coupled model could lead to
further insight into the connection between homeostatic plastic-
ity and the ability to learn, which has been confirmed in recent
experiments (16).

As another example of possible model extensions, we envi-
sion two interconnected networks. One network, for instance,
may represent the frontal lobe and the other the cerebellum
as functional areas in charge of explicit and implicit thought,
respectively (40). When attention is directed to a given prob-
lem, the excitation of neurons in one network may also excite
neurons in the other network due to the interconnectedness of
these networks. If explicit thought is more costly, fatigue in the
corresponding network may ensue relatively early in the process
of problem solving. However, the coupled system may continue
working on the problem due to the network for implicit thought.
In this case, the reason why the latter network, which houses an
internal model of the problem (40), may be able to continue is
that implicit thought costs much less energy. A cost reduction
may be the result of a simplified structure of the internal model
compared with the full mental model of the problem constructed
in the network for explicit thought.
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